

Estelite Posterior

Tokuyama Dental | **Технический отчет**

ESTELITE POSTERIOR QUICK - ТЕХНИЧЕСКИЙ ОТЧЕТ

УПОЛНОМОЧЕННЫЙ ПРЕДСТАВИТЕЛЬ ПРОИЗВОДИТЕЛЯ / ИМПОРТЕР: АО «ПРОТЕКО», Россия, 196128, г. Санкт-Петербург, ул. Варшавская, д. 5, корп. 2, лит. А, оф. 401

тел.: +7 (812) 779 -30-90 e-mail: info@protecodent.ru

protecodent.ru

Оглавление

7

1	Вве	дение		2		
2	Опи	сание т	ехнологии	2		
	2.1	техноло	ОГИЯ УСКОРЕНИЯ ФОТОПОЛИМЕРИЗАЦИИ RAP	3		
	2.2	наполні	итель	3		
3	Хара	актерис	тики Estelite Posterior	4		
	3.1	•	ъ полимеризации	4		
		3.1.1	ТВЕРДОСТЬ ПОВЕРХНОСТИ	5		
		3.1.2	ГЛУБИНА ПОЛИМЕРИЗАЦИИ	5		
			УСТОЙЧИВОСТЬ ПРИ РАБОЧЕМ ОСВЕЩЕНИИ	6		
	3.2		А МАТЕРИАЛА	7		
		3.2.1	ПРОЧНОСТЬ НА ИЗГИБ	7		
		3.2.2	ПРОЧНОСТЬ НА СЖАТИЕ	7		
		3.2.3	ПОЛИМЕРИЗАЦИОННАЯ УСАДКА	8		
		3.2.4	ПРОЗРАЧНОСТЬ И ОТТЕНОК ДО И ПОСЛЕ ПОЛИМЕРИЗАЦИИ	9		
		3.2.5	ИЗМЕНЕНИЕ ЦВЕТА ПРИ КОНТАКТЕ С КОФЕ	10		
		3.2.6	РЕНТГЕНОКОНТРАСТНОСТЬ	10		
	3.3	РАБОЧИЕ	ХАРАКТЕРИСТИКИ	11		
	3.4	ВАРИАНТ	ъ оттенков	12		
4	Резу	/льтаты	исследований	12		
	4.1			12		
5	Выв	оды	РАБОЧИЕ ХАРАКТЕРИСТИКИ 11 ВАРИАНТЫ ОТТЕНКОВ 12 ЬТАТЫ ИССЛЕДОВАНИЙ 12 ЭФФЕКТИВНОСТЬ ТЕХНОЛОГИИ RAP 12			
6	Лит	ература	9	15		

1 Введение

Компания Tokuyama Dental предлагает широкий ассортимент фотополимеризуемых композитных материалов, изготовленных с применением уникальной технологии наполнителя сферической формы субмикронного размера. В частности, Palfique Estelite, Estelite Sigma и Palfique Estelite LV получили всемирное признание благодаря высокоэстетичным результатам и зеркальному блеску поверхности реставраций.

В 2005 г. Токиуата Dental выпустила текучий композит Estelite Flow Quick, сочетающий в себе инновационный катализатор (технология RAP) и запатентованный наполнитель, которые позволили значительно (примерно на 60%) сократить время полимеризации по сравнению с традиционными текучими композитами. Кроме того, Estelite Flow Quick отличается максимальным содержанием наполнителя (71% массы) среди всех аналогичных текучих композитов. Материал демонстрирует превосходные физические и механические свойства.

Теперь технология RAP нашла свое применение и в универсальном композите Estelite Posterior. Впервые этот материал появился на стоматологическом рынке в Японии в ноябре 2007 г. Estelite Posterior характеризуется исключительными физическими и механическими свойствами и естественным внешним видом реставраций. Это стало возможно благодаря двум отличительным особенностям материала:

- 1) технология RAP для улучшения полимеризации матрикса, а также физических и механических свойств композита
- оптимизированное преломление света для максимально точного попадания в цвет зубов

Далее приведено более подробное описание этих особенностей и их влияния на физические свойства композита.

2 Описание технологии

Два основных отличия композита Estelite Posterior:

- 1) Использование технологии ускорения фотополимеризации RAP
- 2) Точное попадание в цвет зубов

В следующих разделах эти особенности и их влияние на результат реставрационного лечения описываются подробнее.

2.1 ТЕХНОЛОГИЯ УСКОРЕНИЯ ФОТОПОЛИМЕРИЗАЦИИ RAP

В композите Estelite Posterior применяется та же технология ускорения фотополимеризации (RAP), что и в Estelite Flow Quick. В деталях особенности этой технологии описаны в отчете о Estelite Flow Quick, здесь же представлено краткое описание. Основное преимущество технологии RAP заключается в обеспечении баланса высокой полимеризационной активности, которая позволяет сократить время полимеризации почти на 60% по сравнению со стандартными композитами, и относительно низкой чувствительности к рабочему освещению. Как правило, два этих свойства являются взаимоисключающими, поскольку сокращение времени полимеризации приводит к снижению устойчивости композита к внешнему освещению. Технология RAP нивелирует это несоответствие. На рис. 1 схематично представлен принцип действия.

- 1) Молекула камфорохинона (CQ) обеспечивает поступление множества свободных радикалов
- 2) Быстрый переход от возбуждения CQ до завершения формирования свободных радикалов молекулы фотоинициатора

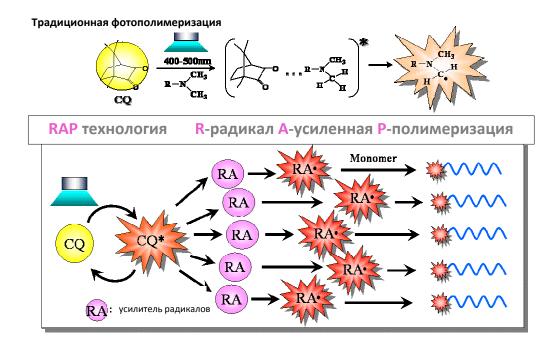
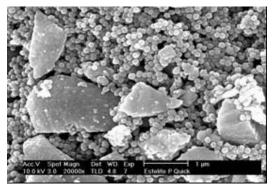
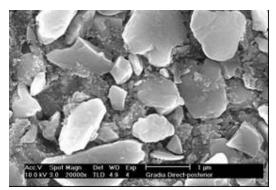
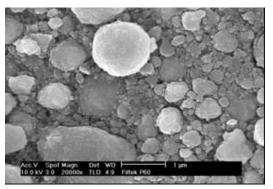
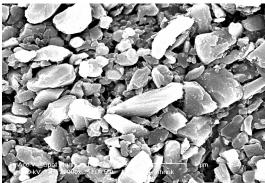



Рисунок 1. Принцип действия технологии ускорения фотополимеризации (RAP)


2.2 НАПОЛНИТЕЛЬ

Для получения Estelite Posterior к монодисперсному наполнителю (Si-Zr, 0,2 мкм), используемому в Estelite Sigma Quick и Estelite Sigma, добавили гетерогенные частицы размером в среднем 3 мкм. Это позволило создать условия для более равномерного распределения нагрузки и повысить прочность композита. Разный размер частиц наполнителя (в среднем 3 мкм) оптимизирует преломление света и препятствует изменению оттенка в результате полимеризации. Именно этим обусловлены превосходные оптические свойства Estelite Posterior.


Ниже на снимках сканирующей электронной микроскопии (СЭМ) показаны частицы наполнителя Estelite Posterior и других композитов разных производителей. Размер частиц гетерогенного наполнителя других композитов сильно варьирует (гибридный); частицы наполнителя Estelite Posterior в гораздо меньшей степени отличаются по размеру (около 3 мкм), а пространство между ними заполнено мономодальными частицами (0,2 мкм).


Puc. 2 Estelite Posterior 20,000xmagnification

Puc. 4 Gradia Direct Posterior 20,000x

Puc. 3 Filtek P60 20,000x magnification

Puc. 5 Filtek LS 20,000x

3 Характеристики Estelite Posterior

Четыре отличительные особенности композита Estelite Posterior:

- 1) Быстрая полимеризация
- 2) Улучшенные физические свойства
- 3) Высокоэстетичные результаты
- 4) Удобство в работе

Далее каждая из этих характеристик материала обсуждается более подробно.

3.1 СКОРОСТЬ ПОЛИМЕРИЗАЦИИ

Быстрая полимеризация является одним из основных преимуществ Estelite Posterior. В среднем, композиты рекомендуется полимеризовать в течение примерно 20 секунд, хотя время может варьировать в зависимости от интенсивности излучения и оттенка материала.

Рекомендуемая продолжительность полимеризации Estelite Posterior не превышает 10 секунд. Увеличение скорости полимеризации способствует более эффективному порционному моделированию реставраций, а также облегчает стоматологическое лечение детей и пациентов с гиперсаливацией.

Проанализировали скорость полимеризации Estelite Posterior с учетом твердости материала и глубины полимеризации при использовании разных устройств для световой полимеризации (таблица 1).

Таблица 1. Полимеризационные устройства: особенности и спецификация

_	Свет	Длина волны (нм)	Интенсивнос (мВт/см2)	гь Особенности
Optilux LCT	Галоген	400~500	800	Самое популярное устройство для световой полимеризации в стоматологии

3.1.1 ТВЕРДОСТЬ ПОВЕРХНОСТИ

График 1 демонстрирует взаимосвязь между продолжительностью полимеризации и поверхностной твердостью (по Виккерсу) полимеризованного композита. Заметно, насколько быстро твердеет поверхность Estelite Posterior.

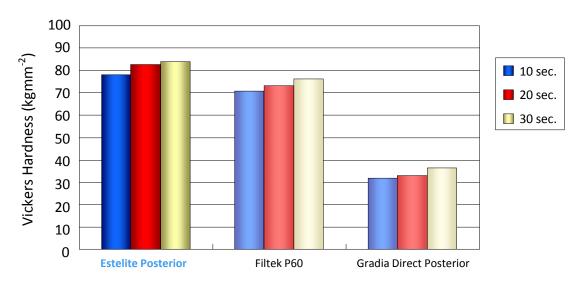


График 1. Взаимосвязь твердости поверхности и продолжительности полимеризации (Optilux LCT)

3.1.2 ГЛУБИНА ПОЛИМЕРИЗАЦИИ

На графике 2 продемонстрирована зависимость глубины полимеризации разных композитов от времени их полимеризации (на примере оттенка АЗ). В отличие от показателей твердости поверхности, статистически значимая разница между материалами отсутствует. Таким образом, рекомендуемая толщина слоя Estelite Posterior не должна превышать 2 мм.

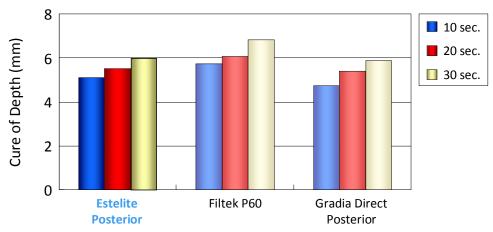


График 2. Взаимосвязь твердости поверхности и продолжительности полимеризации (Optilux LCT)

3.1.3 УСТОЙЧИВОСТЬ ПРИ РАБОЧЕМ ОСВЕЩЕНИИ

Быстрая полимеризация требует введения в композит фотоинициирующих компонентов в высокой концентрации. Однако это, в свою очередь, делает материал более вязким и повышает его чувствительность к внешнему освещению. В некоторых клинических ситуациях моделируемость композита снижается, вследствие чего реставрацию требуется переделать. Более того, высокое содержание катализатора может способствовать значительному изменению оттенка в результате полимеризации. В целом, увеличение концентрации фотоинициаторов характеризуется рядом нежелательных последствий. Однако технология RAP (см. раздел 2.1) позволяет добиться баланса между полимеризационной активностью и чувствительностью композита к внешнему освещению.

На графике 3 сравнивается устойчивость к внешнему освещению (увеличение х10000, стоматологический светильник) Estelite Posterior и других композитных материалов для восстановления жевательных зубов. Рабочее время Estelite Posterior достигает 50 секунд, что сопоставимо с другими композитами, при этом на полимеризацию Estelite Posterior необходимо меньше времени. Таким образом, изготовление реставрации из Estelite Posterior не требует спешки.

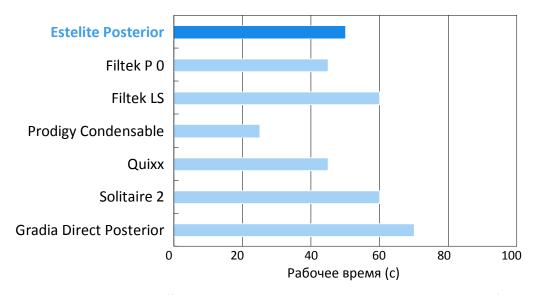


График 3. Сравнительная устойчивость разных стоматологических композитов к рабочему освещению

3.2 СВОЙСТВА МАТЕРИАЛА

Технология RAP обеспечивает превосходные полимеризационные характеристики Estelite Posterior. Однако этот материал обладает дополнительными улучшенными физическими свойствами. Для подробного анализа подготовили образцы Estelite Posterior и других композитов, полимеризовав их с помощью лампы Optilux LCT в течение 10 и 20 секунд, соответственно.

3.2.1 ПРОЧНОСТЬ НА ИЗГИБ

График 4 демонстрирует прочность на изгиб Estelite Posterior и других стоматологических композитов.

Estelite Posterior относится к композитам для восстановления жевательных зубов, обладающим высокой прочностью на изгиб. Предполагают, что это возможно благодаря ускоренной полимеризации (технология RAP, см. раздел 2.1) и гетерогенному наполнителю диаметром около 3 мкм, которые способствовали более равномерному распределению нагрузки на композит.

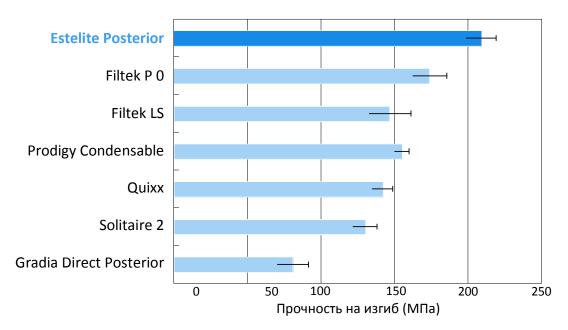


График 4. Сравнительная прочность на изгиб разных стоматологических композитов

3.2.2 ПРОЧНОСТЬ НА СЖАТИЕ

График 5 демонстрирует прочность на сжатие Estelite Posterior и других стоматологических композитов.

Estelite Posterior относится к композитам, обладающим высокой прочностью на сжатие. Считается, что, как и в случае с прочностью на изгиб, высокая прочность на сжатие также является результатом применения технологии RAP и гетерогенного наполнителя.

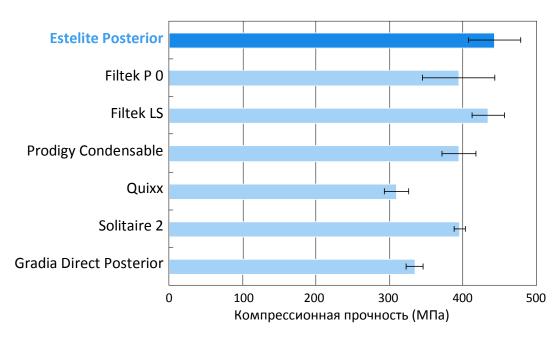


График 5. Сравнительная прочность на сжатие разных стоматологических композитов

3.2.3 ПОЛИМЕРИЗАЦИОННАЯ УСАДКА

Для анализа полимеризационной усадки применили запатентованный метод. На *рис.* 6 представлена схема использования специального оборудования, которое позволяет измерить степень усадки композита на дне полости — в области контакта композитного образца и поршня — с учетом воздействия внешнего света. Таким образом, исследование проводится в условиях, приближенных к клиническим.

На *графике* 6 сравниваются показатели полимеризационной усадки Estelite Posterior и других стоматологических композитов через 3 минуты после начала полимеризации. Линейная усадка Estelite Posterior составляет 1,5% — это среднестатистический результат для представленных на рынке стоматологических композитов.

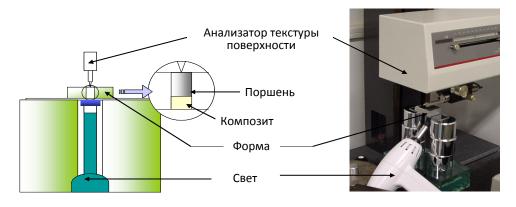


Рисунок 6. Схема прибора для анализа степени полимеризационной усадки

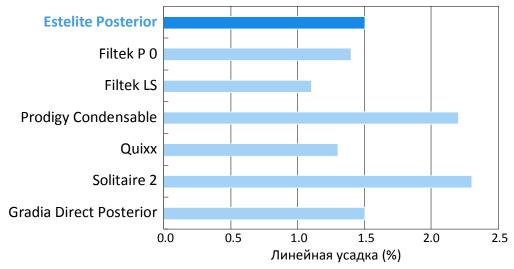
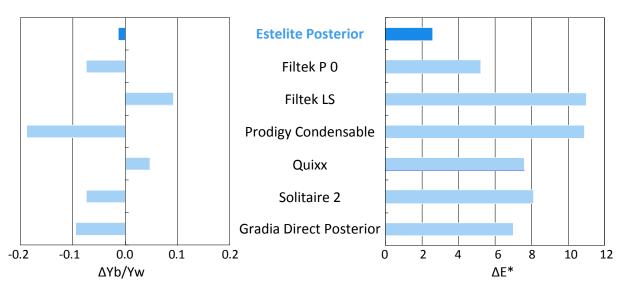



График 6. Степень полимеризационной (линейной) усадки разных стоматологических композитов

3.2.4 ПРОЗРАЧНОСТЬ И ОТТЕНОК ДО И ПОСЛЕ ПОЛИМЕРИЗАЦИИ

Композиты, которые значительно меняют свой оттенок в результате полимеризации, оправданно вызывают обеспокоенность клиницистов, поскольку окончательный внешний вид такой реставрации можно в полной мере оценить только после полимеризации. В случаях, когда внешний вид реставрации отличается от запланированного, ее требуется удалить, а затем повторно выполнить лечение.

Оттенок и прозрачность Estelite Posterior практически не изменяются в результате полимеризации, что дает возможность прогнозируемо определить цвет реставрации. На графике 7 показана разница в прозрачности и оттенке Estelite Posterior и других стоматологических композитов до и после полимеризации. Минимальные изменения обоих параметров делают подбор оттенка Estelite Posterior предсказуемым и существенно снижают вероятность полимеризационного искажения цвета реставрации.

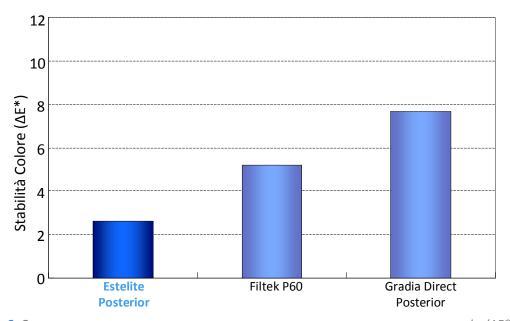


График 7. Сравнительные изменения прозрачности и оттенка разных стоматологических композитов до и после полимеризации

3.2.5 ИЗМЕНЕНИЕ ЦВЕТА ПРИ КОНТАКТЕ С КОФЕ

СВ полости рта композитные реставрации контактируют с разнообразными продуктами питания и напитками, из-за чего со временем темнеют и изнашиваются. При определенных условиях этот процесс может привести к формированию выраженных эстетических дефектов. Выполнили лабораторное исследование для оценки изменения цвета композита при погружении в кофе (80°C) на 24 часа. Результаты показаны на графике 8.

Estelite Posterior продемонстрировал наименее выраженные изменения цвета среди исследованных композитов. Можно предположить, что в клинических условиях потемнение реставрации из Estelite Posterior в долгосрочной перспективе также будет минимальным.

График 8. Окрашивание разных стоматологических композитов при погружении в кофе (ΔE^*)

3.2.6 PEHTFEHOKOHTPACTHOCTL

Рентгеноконтрастность композитов зависит от состава неорганического наполнителя и его процентного соотношения. В целом, чем больше наполнителя в композите и чем выше порядковый номер химических элементов в его составе, тем более опаковым будет сам материал. Однако наполнитель с очень высоким содержанием элементов с большим атомным числом отличается высокими показателями преломления света, а значит, его оттенок и прозрачность будут значительно изменяться в результате полимеризации.

Как уже было отмечено (см. раздел 2.2), благодаря особенностям неорганического наполнителя разница в оттенке и прозрачности композита Estelite Posterior до и после полимеризации минимальна. При этом материал отличается максимально возможной для такого состава рентгеноконтрастностью. На графике 9 сравнивается рентгеноконтрастность разных стоматологических композитов.

Рентгеноконтрастность Estelite Posterior несколько превышает средний показатель среди сопоставимых композитных материалов.

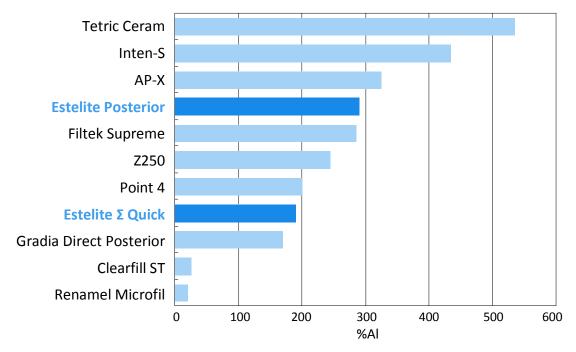


График 9. Рентгеноконтрастность композитных материалов

Рентгеноконтрастность Estelite Posterior близка к среднестатистической. Этого достаточно для качественной рентгенологической оценки результатов реставрационного лечения. Справа: прицельный снимок зуба, восстановленного Estelite Posterior

3.3 РАБОЧИЕ ХАРАКТЕРИСТИКИ

По сравнению с Estelite Sigma Quick и Estelite Sigma, Estelite Posterior отличается более высокой твердостью и эластичностью, что делает его оптимальным материалом для

восстановления жевательных зубов. Такие дефекты обычно довольно протяженные, из-за чего многие клиницисты стараются плотнее утрамбовать композит так, чтобы он максимально заполнил сформированную полость (см. фото). С учетом этого композит должен иметь достаточную твердость и не прилипать к инструментам. Estelite обладает нужными твердостью и эластичностью.

На фотографиях ниже показана консистенция двух разных композитов после воздействия компрессионной нагрузки в 2 кгс. Очевидно, что образец Estelite Posterior не прилипает к поверхности стержня из нержавеющей стали.

Рисунок 9 Estelite Posterior

Рисунок 10 Clearfil AP-X

3.4 ВАРИАНТЫ ОТТЕНКОВ

Estelite Posterior представлен в четырех оттенках: PA1, PA2, PA3 и PCE (прозрачная эмаль) (рис. 11). Оттенок PCE отличается бледно-желтым подтоном и более прозрачен по сравнению с другими оттенками, что делает его наиболее подходящим для устранения небольших дефектов и порционного моделирования. Полученный результат соответствует эстетическим требованиям.

Рисунок 11. Линейка оттенков Estelite Posterior

Композитный материал Estelite Posterior отличается превосходными характеристиками, среди которых высокая полимеризационная активность и эстетичность. Это стало возможным благодаря революционной технологии ускорения фотополимеризации (RAP), которая применяется и в материале Estelite Flow Quick, а также монодисперсному наполнителю сферической формы субмикронного размера.

4 Результаты исследований

4.1 ЭФФЕКТИВНОСТЬ ТЕХНОЛОГИИ RAP

В Орегонском университете здоровья и науки (OHSU) были проведены исследования для оценки эффективности технологии RAP. Результаты подтвердили превосходство физических и механических свойств Estelite Posterior (EPQ-101RAP) над композитами, в которых применятся стандартный аминный инициатор камфорохинон (EPQ-101CQ). Обратите внимание, что состав наполнителя ESQ-201RAP совпадает с Estelite Sigma Quick, в котором в качестве фотоинициатора используется только CQ.

1610 Новая система фотополимеризации (RAP) улучшает свойства стоматологических композитов

Д.Л. ФЕРРАКАНЕ, Л.Л. ФЕРРАКАНЕ, Орегонский университет здоровья и науки (Портленд, Орегон, США)

Технология ускорения фотополимеризации (RAP) разработана с целью повышения эффективности полимеризации стоматологических композитов посредством увеличения количества свободных радикалов, поступающих из каждой активированной молекулы фотоинициатора (камфорохинона, CQ) (AADR № 1392-1393, 2006). Прямое сравнение двух сопоставимых композитов с использованием технологии RAP и без нее ранее не проводилось.

Цель исследования заключалась в сравнении прочности на изгиб и модуля упругости при изгибе двух фотополимеризуемых композитов с технологией RAP и без нее (только CQ). Предположили, что технология RAP улучшает механические свойства композита и сокращает продолжительность его полимеризации.

Методы. Оценили прочность на изгиб (FS) и модуль упругости при изгибе (E) двух композитов (Tokuyama Dental): ESQ-201 (супрананочастицы, 200 нм; 82% массы) и EPQ-101 (гибридный с супрананочастицами, 83% массы). Каждый из этих композитов представлен в двух вариантах: с технологией RAP (RAP+CQ) и без нее (CQ). Все образцы (25х2х2 мм) фотополимеризовали в стеклянных трубочках в течение 20 или 40 секунд/сторона (Triad II, Dentsply), а затем на 24 часа погрузили в дистиллированную воду (37°C). После этого провели тест на изгибание в трех точках со скоростью 0,25 мм/мин (n=10). Результаты для каждого композита сравнили с помощью 2-факторного ANOVA/среднего Tukey (p < 0,05; статистически достоверная разница отсутствует).

Результаты:	Прочность на	а изгиб (МПа)	Модуль упругости/ модуль Юнга (ГПа)		
	20 сек	40 сек	20 сек	40 сек	
ESQ-201 RAP	86.20 ± 9.39	98.27 ± 7.98	6.39 ± 0.60	7.42 ± 0.62	
ESQ-201 CQ	73.00 ± 9.25	89.04 ± 10.8	4.69 ± 0.61	6.28 ± 0.70	
EPQ-101 RAP	124.62 ± 22.66	126.12 ± 29.00	11.04 ± 1.94	15.53 ± 0.96	
EPQ-101 CQ	94.55 ± 28.13	104.57 ± 34.60	8.91 ± 1.54	11.81 ± 1.34	

Показатели FS и E статистически отличались для обоих композитов в следующих случаях: RAP>CQ; 40 сек>20 сек (искл. 40 сек = 20 сек для EPQ-101 FS), RAP-20 сек = CQ-40 сек (искл. RAP 20 сек \geq CQ 40 сек для EPQ-101 FS).

Выводы. Исследование подтвердило предположение, что технология RAP повышает прочность на изгиб и модуль упругости при изгибе по сравнению с использованием только камфорохинона. На примере двух композитов было показано, что технология RAP позволяет сократить полимеризацию в два раза и при этом получить сопоставимые показатели. При поддержке Tokuyama Dental Corporation.

Seq #168 – Keynote Address and Polymerization Processes and Mechanisms 10:45 AM-12:15 PM, Friday, July 4, 2008 Metro

Toronto Convention Centre Room 801A

Back to the Dental Materials 5: Polymer-based Materials – Chemistry and Composition Program

Back to the IADR 86th General Session & Exhibition

1653 Фотоинициация по технологии RAP увеличивает твердость и степень конверсии исследуемых композитов

Д.Л. ФЕРРАКАНЕ, Г.Б. ДЭВИС, Орегонский университет здоровья и науки (Портленд, Орегон, США) - A201 (конференц-центр Майами-Бич)

Недавнее исследование подтвердило способность технологии ускорения фотополимеризации (RAP) повысить прочность на изгиб и модуль упругости при изгибе композитов, а также сократить продолжительность полимеризации (AADR # 1610, 2007).

Цель исследования заключалась в сравнении твердости (КНN) и степени конверсии (DC) двух фотополимеризуемых композитов с технологией RAP и без нее (только CQ).

Методы. Оценили твердость (КНN) и степень конверсии (DC) двух композитов (Tokuyama Dental): ESQ201 (супрананочастицы, 200 нм; 82% массы;) и EPQ101 (гибридный с супрананочастицами, 83% массы). Каждый из этих композитов представлен в двух вариантах: с технологией RAP (RAP+CQ) и без нее (CQ). Образцы (диски 7х2 мм; n=5) фотополимеризовали в ПВС формах направленным светом сверху в течение 20, 30 или 40 секунд (500-550 мВт/см2; Optilux 501, Kerr), а затем на 24 часа погрузили в дистиллированную воду (37°C). После этого оценили DC (FTIR) и КНN (200 г) на верхней и нижней поверхностях дисков. Результаты для каждого композита сравнили с помощью 3-факторного ANOVA/среднего Tukey (a ≤ 0,05).

Результаты. КНN: RAP > CQ (искл. EPQ101-40сек-верх) и Верх > Низ (искл. EPQ101-40сек-RAP). DC: RAP > CQ (искл. EPQ101-низ-20/30сек; ESQ201-низ-30сек) и Верх > Низ. Более длительная полимеризация не привела к статистически значимым изменениям в группе ESQ201; а в EPQ101только для КНN-CQ и КНN-RAP-низ.

			KHN (кг/мм²)			DC (%)	
		20 сек	30 сек	40 сек	20 сек	30 сек	40 сек
ESQ201 RAP	Тор	63 ± 4	61 ± 7	65 ± 6	49 ± 3	49 ± 3	48 ± 4
ESQZUI KAP	Bottom	53 ± 9	50 ± 5	55 ± 6	45 ± 4	42 ± 6	46 ± 5
ESQ201 CQ	Тор	53 ± 9	54 ± 3	46 ± 3	43 ± 2	44 ± 4	42 ± 1
ESQ201 CQ	Bottom	36 ± 6	42 ± 4	38 ± 4	39 ± 3	41 ± 4	38 ± 2
EPQ101 RAP	Тор	119 ± 16	127 ± 17	117 ± 10	57 ± 2	54 ± 4	57 ± 3
EPQIUI KAP	Bottom	72 ± 4	76 ± 15	112 ± 9	43 ± 4	41 ± 4	54 ± 3
EPQ101 CQ	Тор	84 ± 10	96 ± 5	117 ± 6	48 ± 3	49 ± 3	48 ± 2
EPQIOLCQ	Bottom	44 ± 14	61 ± 5	91 ± 12	43 ± 3	44 ± 6	43 ± 3

Выводы. Технология RAP улучшила показатели KHN и DC по сравнению с использованием только камфорохинона. На примере двух композитов было показано, что в некоторых случаях технология RAP позволяет сократить продолжительность полимеризации и при этом получить сопоставимые показатели твердости или степени конверсии композита.

При поддержке Tokuyama Dental Corporation

5 Выводы

- 1) Быстрая полимеризация
 - Полимеризация Estelite Posterior занимает почти на 60% меньше времени, по сравнению с традиционными композитными материалами.
 - Estelite Posterior совместим со всеми популярными приборами для световой полимеризации, в том числе галогеновыми, светодиодными и ксеноновыми.
- 2) Улучшенные физические свойства
 - Estelite Posterior демонстрирует максимальные показатели прочности на изгиб и на сжатие.
- 3) Точное попадание в цвет зубов
 - Незначительная разница в оттенке и прозрачности до и после полимеризации.
- 4) Оптимальные рабочие характеристики
 - Хорошая моделируемость

6 Литература

- 1) J.L. FERRACANE [Novel photoinitiator system (RAP) enhances dental composite properties | IADR 2008, 1610
- 2) J.L. FERRACANE [RAP Initiator Improves Hardness and DC of Experimental Composites] IADR 2009, 1653

■ ESTELITE POSTERIOR Packaging ■

ESTELITE POSTERIOR 1 syringe, 2mL (4,2g)

Available shades:

12911 Estelite Posterior PA1

12912 Estelite Posterior PA1

12913 Estelite Posterior PA1

12914 Estelite Posterior PA1

УПОЛНОМОЧЕННЫЙ ПРЕДСТАВИТЕЛЬ ПРОИЗВОДИТЕЛЯ / ИМПОРТЕР: AO «ПРОТЕКО», Россия, 196128, г. Санкт-Петербург, ул. Варшавская, д. 5, корп. 2, лит. A, оф. 401 тел.: +7 (812) 779 -30-90

e-mail: info@protecodent.ru protecodent.ru